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摘要

自從 AlexNet在 2012年的 ImageNet challenge的突破後，深度神經網路 (DNN)已
經在眾多領域展現其價值。而現今許多 DNN的硬體加速器設計都是採用小的晶
片上快取 (on­chip cache)搭配大的晶片外記憶體 (off­chip memory)以避免頻繁的資
料讀寫耗費太多時間或能量。然而，隨著科技及晶片製程的演進，除了上述的設

計外，硬體設計者開始擁有更多的記憶體設計的選項。因此擁有一個用來衡量各

種記憶體搭配的優劣利弊的工具變得重要。

然而，現存的工具存在以下的限制：1)只能用於推論 (inference)，不能用於神
經網路的訓練 (training) 2)只用圖像辨識的神經網路作為主要的效能評估指標 3)只
有模擬卷積層 (convolutional layer)內部的資料流 (dataflow)，而忽略其他例如批正
規層 (batch normalization layer)、活化層 (activation layer)等層影響。我們認為神經
網路的訓練對於拓展應用領域或是研究更有效率的網路結構皆極其重要，且除了

卷積層及全連接層以外的層，在神經網路中訓練也具有不可忽略的影響。

在這篇論文中，我們提出了一個著重於記憶體的神經網路訓練效能分析模型。

這個分析模型以神經網路結構、晶片上快取的容量、晶片外快取的頻寬作為輸入

參數，假設採用幾近最佳化的軟體管理快取 (software­managed cache)以避開快取
設計中實作細節對效能的折扣，預估這組輸入參數下能夠得到的訓練效能，例如

訓練一回合需要的執行時間、平均頻寬、資料搬移量等等。

這篇論文具有以下貢獻：1)提出一個可以用於評估整個深度神經網路訓練過程
效能的模型，並且有將過程中的所有層皆考慮進去，而非只考量某些計算量較大

的層。2)對於深度神經網路中各種規模的資料再利用提出徹底的分析。3)提出幾
項對於現行神經網路的觀察及建議以提供未來深度神經網路的研究及優化可著重

的方向。

關鍵字：深度神經網路、神經網路訓練、頻寬、快取容量、分析模型、資料

再利用
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Abstract

Since the breakthrough of AlexNet in 2012 ImageNet challenge, Deep Neural Networks

(DNNs) has been proving the effectiveness in various computing fields. Many hardware

designs combine a small on­chip cache with large off­chip memories to prevent expensive

memory access. With the progress of technology, hardware designers are having more and

more design choices. A tool to estimate the tradeoffs among all memory design parameters

is thus important.

However, existing tools are limited to i) inference only; ii) image classification net­

works as the primary benchmark for evaluation; iii) only model the dataflow within the

convolutional layers, neglecting other layers like batch normalization and activation. We

believe that training networks is still important to extend the applications and developmore

efficient model structure, and layers except convolutional and fully­connected layers still

play an non­negligible role in DNN training.

In this work, we propose an analytical model for DNN training with focus on memory.

The analytical model takes the DNN model, on­chip cache capacity, off­chip memory

bandwidth as input, and assumes a near­optimal software­managed cache to bypass the

issue of implementation detail in the cache design, to estimate some performance metrics

like execution time, average bandwidth, memory traffic, etc., of a training iteration.

This work has the following contributions: i) proposing an analytical model to esti­

mate the performance of a whole DNN training iteration rather than some selected layers,

ii) provide a thorough analysis of DNN architecture in all scales, iii) several observations

and recommendations on where future DNN training research and optimization should be

focused are proposed.

Key words: Deep Neural Network, training, bandwidth, cache capacity, analytical model,

data reuse
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Chapter 1

Introduction

Since the breakthrough of AlexNet [2], there have beenmanymachine learningmodels

based on the DNN approach. These models are developed for different applications rang­

ing from the original image classification to object detection, speech recognition, machine

translation, natural language processing, and advertisement recommendation system. A

Deep Neural Network (DNN) usually consists of tens or hundreds of layers of neurons

stacked together to achieve the desired prediction task. With so many neurons, the com­

putation demand is very high. There have been many special­purposed hardware designed

to accelerate the computation demand of DNNs. With the size of neurons in hundreds of

megabytes, the amount of memory needed to store model parameters and activation results

is very high.

With continuing advancement of semiconductor technology, not only logic density is

getting higher, on­chip memory compactness has been increasing as well. For example,

an SRAM bit cell area reduces from 0.074 µm2 (in 16nm circa 2014) to 0.021 µm2 (in

5 nm circa 2020) [3]. With the reticle size limited to a bit over 800 mm2, balancing the

amount of on­chip memory with computation logic remains to be one of the key trade­

offs facing chip designers. One could put a large amount of SRAM on chip to alleviate

the memory bandwidth pressure resulting from the soaring amount of computation. For

example, AMDRadeon RX 6000 series GPU [4] utilizes an approach called infinity cache

which utilizes a large on­chipmemory up to 128MB.While another design, NVIDIARTX

3090, [5][6] has only 6 MB of SRAM for the its last­level cache (LLC). There are other

1
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implications beyond just the area trade­off between SRAM capacity and logic. Increasing

SRAM capacity may also increase on­chip memory latency and standby power.

To complicate the design trade­off of balancing between on­chip memory size and

computation capability, there are several different off­chip memory options to consider.

DDRx DRAM (commonly used in CPU based system) is less expensive and can pro­

vide large capacity but has a lower bandwidth. Graphic DRAM such as GDDR6 achieves

higher bandwidth with higher IO frequency but has lower capacity and it is costlier and

consumes more power. Newer 3D memory like High­Bandwidth Memory (HBM) sup­

ports very high bandwidth but is much more expensive. It is also harder to scale to larger

capacity. With ever increasing DNN model size [7], the pressure on the off­chip memory

size will continue. With the above mentioned challenges, a tool to estimate the trade­offs

among on­chip computation/memory partition, off­chip memory selection with perfor­

mance and cost in mind is highly desirable.

In this work, we develop an analytical model to estimate the performance of a DNN

training task with memory subsystem design in mind. The capacity of on­chip cache af­

fects the data reuse in the computation. With a larger cache capacity a longer reuse distance

can be captured thus reducing the off­chip memory bandwidth pressure. At the same time,

the off­chip memory bandwidth determines the time required to move the needed caching

data into or out of the chip. The computational throughput indicates the computation time

required to finish a given number of operations. If the computational throughput and off­

chip memory bandwidth is perfectly matched, the computation time and memory I/O time

can overlap completely eliminating wait time. These three factors are the most important

hardware parameters affecting the performance of training a DNN workload. Our ana­

lytical model takes on­chip cache capacity, off­chip memory bandwidth, computational

throughput, and the neural network model as input to forecast the effect of each of these

parameters to the DNN performance. The goal is to appraise the benefit of a very large

on­chip memory to aid potential emerging memory technology development.

Our analytical model can support all operations involved in DNNs such as an image

classification [1][8] network architecture with lots of CNN layers, an object detection net­

2
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work [9] and an RNN­based language model network. Our model can be used to estimate

the cache traffic, memory bandwidth, and total execution time of a Deep Neural Network

(DNN) training iteration. This tool supports DNN models from keras.applications [10],

darknet [11][9], and twomachine translationmodels [12][13]with hand­crafted code. This

tool can help accelerator designers to explore the influence of cache capacity, off­chip

memory bandwidth, and computational throughput to the performance of DNN training,

and identify the bottleneck by layer­wise analysis and roofline model. We also provide

some observations from the state­of­the­art networks.

This work makes the following three main contributions.

• We provide an analytical model for DNN training which accepts any existing net­

works in keras.applications [10] or darknet [11][9] as input for trade­offs study. It

also allows a designer to understand execution time, memory bandwidth require­

ment, compute utilization, and on­chip buffer usage of each layer to spot the bottle­

neck for these networks in training.

• We explore all possible aspect of reuse opportunity. Previous works mainly focus

on intra­layer reuse only. However, the amount of intra­layer reuse is limited. With

continue scaling of SRAM and the availability of emerging memory technologies

(e.g. MRAM), it is certainly possible to include a very large on­chip cache or buffer

such as the one in AMD RX6900XT [4] (128 MB). It is essential to evaluate inter­

layer reuse as well. Our model is able to evaluate the inter­layer reuse along the

whole training iteration.

• We demonstrate the model capability by evaluating a few existing state­of­the­art

DNNs and provide key observations for each with this tool. We project network

training performance given various memory system parameters. These insights mo­

tivate technologists to invest research in emerging memory technologies which pro­

vide even denser cell size.

3
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Chapter 2

Related Work

In this chapter, we introduce works related to ours and their limitations. These works

can be categorized into three major types: analytical model, simulator, and benchmark­

ing/profiling. We will give an overview of each major types, and point out some common

limitations that possessed by multiple works. Then we breakdown into three sections to

introduce each works in detail.

Analytical models apply needed arithmetic formula to emulate the workload executing

on a pasteurized hardware model according to known understanding. They are usually

efficient and can obtain results much faster than simulation­based models. For example,

MAESTRO [14] claims that they are 1029.1 − 4116.3× faster than an equivalent RTL

simulation. However, those formula are only applicable to specific targeted workloads.

Simulators typically run actual workloads on a software described hardware model.

They more accurate and can accommodate different workloads once the hardware model

is specified. Unfortunately simulation may run very slowly for DNNs with large number

of layers on a software modeled hardware with many parameters. For example, GPGPU­

Sim [15] runs at thousands of instructions per second, it will require days or weeks to

complete a complex full DNN workload. It is unrealistic to use this approach for design

space exploration (DSE).

Benchmarking selects some representative workloads in several application fields as

benchmarks. Beside this, some of them run these selected workloads with profiling to

provide observations on state­of­the­art applications, which is the part related to ours.

4
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Profiling works run the training or inference program together with a profiler, NVidia

Visual Profiler (NVVP) for example. The profiler records some sort of metrics, including

average bandwidth, compute utilization, etc., at each kernel. By analyzing these metrics,

researchers can figure out the bottleneck of aworkload. Theymay also compare the overall

performance with various batch size or DL framework. The shortcoming of these works is

that they only work for existing hardware. They cannot be used to predict the performance

on non­existing hardware configuration, for example, a much larger cache.

Then we introduce some common design choices and the incurred limitations that

multiple works have.

Limitation 1: Modeling the dataflow within computation­intensive layers like con­

volution and fully­connected. The interactions between layers are neglected, and some

point­wise layers like batch normalization and ReLU are not considered. Some works

focus on the cycle­level dataflowwithin computation­intensive layers, like loop orders and

layer tiling techniques. They discuss the most efficient way to divide a bunch of tensors

and the best way to pass them into PEs. Though we also agree that this topic is still im­

portant; however, these works cannot be extended to large cache, in which caching more

than one layer is totally possible. These works cannot model the interactions between

layers, and their focuses are only on computation­intensive layers, none of them models

the point­wise layers, which exist in almost all DNNs and take non­negligible portion of

execution time. Specifically, TBD [16] observed that 26.04% of the execution time is

consumed by point­wise layers in training ResNet on Quadra P4000. Those point­wise

layers should not be neglected while estimating the end­to­end execution time.

Limitation 2: Only supports forward propagation. Back propagation is not consid­

ered. As we will introduce in 3.3, in terms of data reuse, back propagation requires a

very long reuse distance, which does not exist in inference. This forward­backward reuse

causes a huge difference. Besides the data reuse, the number of operations in back prop­

agation is approximately 2× as many as those in forward propagation. Moreover, as we

will show in Table 3.1, the data requirements in forward and backward propagation are

also different. It is not just a matter of multiplying the execution time by 2 or 3 to calibrate

5
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from inference to training. The problem is far more complex than that.

Limitation 3: Only considers CNN, especially image­classification models, neglect­

ing DNNs in other application fields. The application that gained the most focuses for

designing and evaluating DNN accelerators is image classification. Possibly one of the

reasons is the popularity of ImageNet Challenge. However, there are far more applica­

tions than image classification or even CNNs in deep learning. For example, RNNs and

CNNs are vastly different in layers they use, network structure, feature map size, number

of operations, etc. Those only model CNNs can only model very limited applications.

Next we will break down the related works into three sections and go through them

one by one in detail.

2.1 Analytical Model

MAESTRO [14] (Modeling Accelerator Efficiency via Spatio­Temporal Resource

Occupancy) is an analytical cost model that takes as input 1) a DNN model with a set of

layers, 2) a dataflow description for each layer, and 3) the hardware configuration. Based

on these inputs, MAESTRO outputs estimates of end­to­end execution time, energy (in­

cluding all compute, buffer, and interconnect activities), NoC costs, and so on. The main

focus of MAESTRO is on discussing the effect of dataflow such as loop orders and loop

tiling in convolutional and fully­connected layers, thus having the Limitation 1 and 3 we

mentioned above.

2.2 Simulator

SCALE Sim [17] (Systolic CNN AcceLErator Simulator) is a CNN accelerator simu­

lator that provides estimates on cycle­accurate timing, power/energy, memory bandwidth,

and trace results for a specified accelerator configuration and neural network architecture.

They focus on exploring the intra­layer dataflow in convolutional and fully­connected

layers on systolic array, and also having the Limitation 1 and 3 as MAESTRO [14].
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GPGPU­Sim [15], a long­lasted general­purposed GPU simulator, is a cycle­level sim­

ulator modeling contemporary GPUs running on GPU computing workloads written in

CUDA or OpenCL. Unlike other works mentioned above, itself is simply a simulator

without DNN parser or DL framework support. It can only takes executable files writ­

ten in CUDA (.cu files) or OpenCL (.cl files), but the most popular DL frameworks used

by domain researchers are all Python based (.py files), e.g. TensorFlow and PyTorch.

DNNs in these frameworks cannot be directly taken by GPGPU­Sim unfortunately. To

our best knowledge, there are only two existing packages that can run on GPGPU­Sim

[15] directly, DeepBench [18] and Tango [19]. DeepBench [18] uses the neural network

libraries to benchmark the performance of basic operations on different hardware. It does

not work with deep learning frameworks or deep learning models built for applications.

It is used to benchmark the underlying operations involved in DNNs, cannot be used to

measure the time required to train an entire model. So DeepBench has the Limitaiton 1.

On the other hand, Tango [19], a DNN benchmark suite providing a set of widely used

CNNs and RNNs written in CUDAC and OpenCL, unfortunately supports inference only,

as we mentioned in Limitation 2. Moreover, because their neural networks are written in

low­level languages, it is difficult for domain researchers to extend their works for other

purposes.

2.3 Benchmarking and Profiling

TBD [16] (TrainingBenchmark forDNNs), is a benchmark for DNN training that uses

a representative set of DNN models covering a broad range of machine learning applica­

tions: image classification, machine translation, speech recognition, adversarial networks,

and reinforcement learning. TBD also incorporates an analysis tool chain for performing

detailed resource and performance profiling of these models. They perform a detailed

performance analysis on how these different applications behave on three DNN training

frameworks (TensorFlow, MXNet, CNTK) across different hardware configurations (TI­

TAN Xp, Quadra P4000, Xeon E5­2680) and gain some interesting insights. However,

we cannot predict the performance on newer machine with vastly different hardware con­

7
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figurations from their analysis.

Siu et. al. [20] investigate the on­chip memory requirements of state­of­the­art CNNs

with the goal of minimizing off­chip traffic whilst maintaining a reasonable on­chip mem­

ory capacity. They estimate the cache capacity and bandwidth requirement under four

selected caching scheme, and only consider convolutional layers in image­based applica­

tions. Thus they are having the Limitation 1 and 3.

Tango [19], as a benchmark suite written in CUDA C and OpenCL, which is able to

run on GPGPU­Sim [15], tested their suite on some real machines and GPGPU­Sim and

provided some observations and insights from the results. They run their workloads on

NVIDIA GK210, NVIDIA TX1, GPGPU­Sim, and PynQ­Z1, with 5 CNNs (AlexNet,

ResNet, SqeezeNet, CifarNet, and VGGNet) and 2 RNNs (GRU and LSTM). However,

despite including results on simulators, they still have the Limitation 2.

8
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Chapter 3

Data Reuse in ML Training

3.1 Deep Neural Network Training

Artificial Neural Networks (ANNs), a machine learning technique, take data samples

as input and generates desired outputs for a particular purpose. Deep Neural Networks

(DNNs) are types of ANN with multiple layers (e.g. convolution, fully­connected, pool­

ing, batch normalization, activation, etc) between inputs and outputs. Each layer has its

own set of weights, and applies some mathematical transformation to its input (x) and

weights (W ) to produce the results for the downstream layers. The intermediate results

are called feature maps, and marked as x and y in Figure 3.1.

Figure 3.1: Training a Deep Neural Network (DNN)

3.2 Main Data Types

Tensors are multi­dimensional arrays of a program. For example, input samples of

an image classification network is a 4­dimensional array including batch size (N ), height
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(H), width (W ), and number of channels (C) (e.g. R, G, B channels). Assuming that B is

the number of bytes of each data point in the array, the total size of this tensor cap(X) is:

cap(X) = B ×N ×H ×W × C (3.1)

In forward propagation, the operation can be modeled as Y = f(X,W ), where X

is the input feature(s), W is trainable model parameters, and Y is the output feature of

a layer. Some non­trainable layers (e.g. ReLU) may not have W , and some layers may

contain more than one input tensors (e.g. point­wise add). In backward propagation,

the goal is to calculate ∇W of all trainable layers. This is done through the gradient

descend approach by calculating ∇X backward. More specifically, ∇X = f(∇Y,W ),

and∇W = f(∇Y,X) in most cases1.

tensor input/
output last access next access

forward
X input last layer 1) backprop

2) residual block
W input last batch backprop
Y output N/A next layer

backward

X input forward None
∇Y input last layer None
W input forward next batch
∇X output N/A next layer
∇W output N/A None

Table 3.1: Major data types in forward propagation and backward propagation

In summary, there are 6 major data types to each layers,X ,W , Y ,∇X ,∇W , and∇Y .

Table 3.1 summarizes the tensors relating to a layer in forward propagation and backward

propagation respectively.

3.3 Reuse Scopes

In training a DNN, there are five different types of data reuse: intra­layer reuse, adja­

cent layer reuse, block­scale reuse, recurrent weight reuse, and forward­backward reuse.
1Some special layers like tanh, softmax, ReLU layers have∇X = f(∇Y, Y ).

10
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Figure 3.2: Different scope of reuse pattern

3.3.1 Intra­layer Reuse

This is a data reused within a layer of the network. The type of layer affects intra­

layer reuse mosty. For example, in convolution layers, each data points in the feature

maps or weight are reused up to 103 times. However, feature maps in point­wise layers

like batchnorm, ReLU are only reused one or two times.

3.3.2 Adjacent­layer Reuse

This is the reuse of data within adjacent layers. For example, in Fig. 3.1, Y2, output

of Layer 2, is essentially the same tensor as X3, thus is reused by Layer 3. Hence, if the

output feature map of the previous layer can be kept in cache, there is no need to re­fetch.

This reuse has been studied by [21]. Referring to Table 3.1, the capacity requirement for

this type of data reuse is the tensors of the whole layer. During forward pass, the capacity

is: cap(X)+ cap(W )+ cap(Y ), while it is cap(X)+ cap(∇Y )+ cap(W )+ cap(∇W )+

cap(∇X) for backward pass.

Adjacent layer reuse is important for light­weighted layers such as batchnorm and

ReLU because the computation time is much shorter than the off­chip data transfer time.

With adjacent­layer reuse, these light­weighted layers can start directly without stall.

3.3.3 Block Scale Reuse

As Figure 3.3 shows, the residual connection proposed in ResNet [1] has been widely

applied in many modern DNNs to prevent gradient vanishing. Specifically, x1 is not only
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used by layer 1 but also by the add layer. In the example of Figure 3.3, the capacity require­

ment to capture this residual block reuse at forward propagation is cap(X2) + cap(W2) +

cap(X3) + cap(X1), which is a bit larger than caching adjacent layer.

Figure 3.3: Residual block proposed in ResNet [1]

3.3.4 Recurrent Weight Reuse

The recurrent weight reuse only occurs in recurrent neural networks (RNN). Figure

3.4 shows the unrolling of an RNN cell. The weight A is repeatedly reused T times to

compute the feature maps of T timesteps (h1 to hT ). Moreover, an RNN cell is itself a

small network, consisting of several layers inside. For example, an LSTM cell contains 4

fully­connected, 4 sigmoid, 2 tanh, 3 point­wise multiplication and 1 addition. Therefore,

the reuse distance of weights A within the RNN cell crosses several layers. Specifically,

taking Fig. 3.4 as an example, the capacity requirement for recurrent weight reuse is

cap(xt) + cap(ht) + cap(A) in forward pass, where A includes all the FC weights and

intermediate features in the RNN cell. Approximately, the major part of cap(A) in LSTM

is the weights of the 4 FC layers inside.

Figure 3.4: Unrolling of an RNN cell
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3.3.5 Forward­backward Reuse

The main difference between training and inference is the backward propagation,

which exploits the feature maps obtained at forward pass to compute the gradients of

weights and feature maps. For example, in Fig. 3.1, Y2 is used to compute Y3 in forward

pass, and reused again in backward propagation to compute∇X2 and∇W2.

The capacity requirement to fully capture forward­backward reuse is approximately
N∑
i=1

cap(Yi) + cap(Wi). This value is often too large for on­chip buffering. Nevertheless,

partial reuse is still possible. As Fig. 3.1 shows, in backward propagation (the red arrow),

layers are executed in opposite order to the forward propagation (the blue arrow). Hence,

those which are closer to the loss function have shorter reuse distance than those closer to

the input, and more likely to retain in cache to be reused.

3.4 Operational Intensity and Reuse Frequency

We introduce three terms, operational intensity, ridge point, and reuse frequency,

which will be extensively used in our further analysis.

The roofline model [22] is a visualization method that relates the processor perfor­

mance and the memory bandwidth. This 2­D plane plots operational intensity (opera­

tions/bytes) as x­axis and attainable performance (FLOP/s) as y­axis. The operational

intensity, is defined as operations per byte of DRAM traffic while computing a kernel in

[22]. The ridge point, where the diagonal line (memory­bound) and the horizontal line

(compute­bound) meets in the roofline model, is the point of peak computational per­

formance and peak memory bandwidth, whose x­coordinate is the minimum operational

intensity required to achieve maximum performance. Unless specified, we will use ridge

point to represent the x­coordinate of this point in the following context. This minimum

operational intensity is derived by Equation 3.2, where both the numerator and denomi­

nator are the hardware parameters.

ridge_point(FLOP/bytes) =
throughput (FLOP/s)

off­chip bandwidth (bytes/s)
(3.2)
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However, the off­chip traffic term to derive operational intensity in [22] is related to

the cache design, and can only obtained by running the workload, making it complicated

for static analysis. To simplify the problem, we would like to define another metric, reuse

frequency in Equation 3.3 and Equation 3.4, which shares the same unit as the operational

intensity in [22]. Equation 3.3 is used to describe the reuse frequency of a tensor t in a layer

l, and Equation 3.4 is for a layer l. Note that in Equation 3.3 and 3.4, the tensor capacity

term is not bound to the cache design like the one in operational intensity. Furthermore, as

Equation 3.3 shows, this definition can be transformed into operations per data points in the

multi­dimensional array with the constant B, number of bytes per data points. This is the

reason why we named it. Similar as that in [22], we describe those whose reuse frequency

is larger than the ridge point as compute­bound, and those whose reuse frequency is lower

than the ridge point as memory­bound.

rf(t, l) =
operations(l, t)

cap(t)
=

operations(l, t)

#data_points×B
(3.3)

rf(l) =
operations(l)∑

t∈l cap(t)
(3.4)

Although replacing the off­chip traffic with the tensor capacity may not precisely

present what it really happens, what we want to do by defining this term is to quickly

evaluate whether a workload is tend to be compute­bound or memory­bound like the idea

of [22] without considering the cache design. To be more specific, when compute­bound

tensors are being computed, it is likely that more time is spent on computing them than

transferring them between cache andDRAM. Therefore, while computing compute­bound

tensors, it is possible to prefetch or offload other tensors at the same time to hide the data

transfer latency. However, while the processing tensors are memory­bound, the time re­

quired to load the tensors from off­chip is longer than the time they spend on computation,

whichmay harm the compute utilization. In this way, ideas to improve the utilization when

reaching these tensors are 1) prefetching them to overlap the latency of loading them with

computation time of compute­bound tensors 2) having data reuse to prevent data transfer
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3) increasing off­chip bandwidth to decrease the time to transfer these tensors. Clearly,

there must be enough cache capacity for solution 1 and 2 to work. To sum up, for a work­

load, the proportion of memory­bound tensors can be an indicator as the pressure of the

memory system.
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Chapter 4

Methodology

In this section, we give a high­level view of our framework. We first define the prob­

lemwe aim to solve, and then present an overview of our framework. We will also analyze

the challenges of the problem.

4.1 Problem Definition

The problem we aim to solve in this work is defined as follows. Given the capacity of

the on­chip cache, bandwidth to the off­chip memory, the throughput of the computation

units, and the neural network configuration. Our goal is to estimate the performance and

its related metrics (e.g., total execution time, average computation utilization, average

off­chip bandwidth, and total off­chip memory traffic) in a training iteration under the

management policy that make the best use of the cache such that the stall time and the

memory traffic is minimized.

To obtain the estimates on the execution time and average bandwidth, we use number

of operations divided by throughput to estimate the compute time, and the number of bytes

divided by off­chip bandwidth to estimate the data transfer time. We make no assumption

on the underlying hardware platform and optimistically assumes the accelerator and the

memory bus can achieve full utilization.

We assume an optimal software­managed cache, whose stall time and off­chip mem­

ory traffic can be minimized. We believe that only by applying the optimal data transfer
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scheduling can we discuss the ultimate hardware limitation. However, the search space

for optimally scheduling the data transfer is exponentially large. Finding a globally op­

timal solution for the scheduling problem seems computationally prohibitive. Therefore,

we proposed some heuristics to effectively approximate the optimal scheduling.

First, The Bélády’s algorithm is taken as our cache replacement policy, which has been

proved to be optimal replacement policy, exploiting the network information to replace the

tensor whose next use is the farthest in the future.

Second, as Figure 4.1 shows, our prefetching scheduling takes the data transfer latency

into consideration. For tensor required at layer i, it will be scheduled at layer i− k so that

the computation time from i − k to i − 1 is larger than the loading latency to assure the

latency can be overlapped with computation time.

Third, for the offloading part, our cache performs a prediction mechanism to look

ahead whether a tensor can be kept in cache until its next use under the Bélády’s replace­

ment policy. If a tensor is known in advance that cannot be kept in cache until its next use,

it will be offloaded immediately after the current use. As Figure 4.2 shows, if the offload­

ing scheduling relies solely on the Bélády’s replacement policy, there is still inevitable

stall caused by the offloading latency when computing Layer 3 at forward propagation

(Time 3f). With our look­ahead offloading scheme,X1, the tensor of Layer 1, is offloaded

immediately after forward propagation of Layer 1 is done because the cache cannot keep

it until its next use.

4.2 Framework Overview

Listing 1 shows the complete flow of our framework. The flow can be roughly bro­

ken down into 5 steps. 1) The neural network in keras.applications [10] format first go

through model transformation and parsing to be fed into our model. 2) We apply a re­

cursive algorithm in [23] to schedule the execution order of the layers in the network. 3)

estimates the prefetching timing and record the access pattern according to the execution

order and hardware configuration. 4) In the layer­wise execution, we iteratively offload

unused tensors, prefetch future tensors, and allocate space for output tensor of the current
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(a) prefetch­next­layer policy: delay is caused at the beginning of Layer 5 due to unmatched com­
putation and data transfer time

(b) latency­aware prefetching: the latency to prefetching tensors is considered during scheduling
the prefetching, soW5 is scheduled to be prefetched at the computation­intensive layer Layer 3.

Figure 4.1: Comparison of naive prefetch­next­layer policy and our latency­aware
prefetching policy

(a) without look­ahead: If the tensor is only offloaded when the cache is full, there will be a delay
when the cache is full.

(b) look­ahead offloading: ifX1 is known to be unable to stay in the cache until back propagation
of Layer 1, it should be offloaded immediate after the forward propagation of Layer 1.

Figure 4.2: In this example, when executing Layer 3 forward, the cache must vacate some
space to accommodate the output of Layer 3. Our load­ahead offloading offloads the
tensors of long reuse distance in advance, rather than waiting until the cache runs out of
space.
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layer. 5) We estimate the performance for each single layers and the overall performance.

We introduce the details of each steps in the following subsections.

4.2.1 Model Transformation

Our model can take DNNs in keras.applications [10] as input. The DNN will

undergo amodel transformationwhich dumps the selectedDNN into a network description

plain text file. Then a parser parse this text file into the format that can be processed

internally (line 1). The network description file consists of four elements for each layers:

layer name, layer type, input layer(s), and the parameters required to estimate the output

feature map size and number of operations.

4.2.2 Layer execution order scheduling

After the DNN model is read, the first step before anything can start is to schedule the

layer execution order (line 2). We use the algorithm proposed by [23], which recursively

explores the subsequent layers in Depth­First Searching (DFS), except that it reaches a

join where all prior layers must finish before proceeding.

4.2.3 access_list, prefetch_list construction

After the layer execution order is scheduled, line 3­14 iterate over these layers to pro­

duce access_list and prefetch_list. access_list is a two­dimensional list

recording the tensors being accessed at certain layer. Line 5­6 collect all the tensors that

will be accessed by each layers into the corresponding access_list. This list will be

used by the cache to estimate the access pattern of the processor and to apply Bélády’s

replacement policy.

As Fig. 4.1 shows, our cache applies a latency­aware prefetching to assure better

timing for prefetching. Line 7­14 finds the timing to prefetch and fill the results into the

prefetch_list. For tensor that is required by i­th layer, k is the minimum number

such that the total computation time of layer i − 1, i − 2, ..., i − k is no less than the
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1 network = parse_network("nn.txt");
2 network.layers = route_construct(network);
3 # create access_list and prefetch_list:
4 for layer in network.layers:
5 for tensor in layer.access_tensors:
6 access_list[layer].push_back(tensor);
7 prev = layer.previous_layer;
8 for tensor in layer.input_tensors:
9 load_time = tensor.capacity / bandwidth;
10 accumulated_time = 0;
11 while accumulated_time < load_time:
12 accumulated_time += prev.operations / throughput;
13 prev = prev.previous_layer;
14 prefetch_list[prev].push_back(tensor);
15 # layer-wise execution:
16 for layer in network.layers:
17 # offload_tensors:
18 for tensor in cache:
19 if tensor cannot be kept in cache until next use:
20 cache.offload(tensor);
21 # prefetch_tensors:
22 for tensor in prefetch_list[layer]:
23 if (capacity enough && tensor can be kept in cache until

next use):↪→

24 cache.prefetch(tensor);
25 else:
26 add tensor to the prefetch_list of the next layer
27 # compute:
28 for tensor in layer.input_tensors:
29 check tensor is in the cache;
30 otherwise: cache.load(tensor); # memory stall happens

here↪→

31 cache.generate(output_tensor);
32 print_record(); # per-layer performance
33 print_statistics(); # overall performance

Listing 1: Execution flow of our framework
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time required to load this tensor. As long as the k is found, we will add this tensor into

the prefetch_list of the layer i − k. This list is created beforehand and will be

adjusted during layer­wise execution to avoid prefetched tensors being evicted before they

are actually used.

4.2.4 Layer­wise execution

Line 15­31 corresponds to the layer­wise execution, mainly consisting of three ma­

jor steps, offload, prefetch, and compute. The offload step (line 17­20) examines all the

tensors in the cache, and offload those that cannot be kept until their next use as we men­

tioned in Fig. 4.2. The prefetch step (line 21­26) tries to prefetch the tensors according

to the prefetch_list constructed in the last paragraph. However, considering the

prefetched tensors occupy the cache space and may cause the executing layer have insuf­

ficient space for storing output, an evaluation is performed before prefetching the tensors

(line 23). If the tensor cannot be kept in the cache until its next use, the prefetching will

be defer to the next layer.

Last, the compute step (line 27­31) first check the necessary inputs have been loaded

into the cache; otherwise the processor have to wait for the data being loaded into the

cache. Then line 31 allocates the space for output tensor of the layer.

4.2.5 Performance estimations

After the computation and data transfer is modeled, we can estimate the performance

from collecting the records kept in layer­wise execution. Line 31 estimates the perfor­

mance at each single layer, and line 32 estimates the overall performance throughout a

training iteration. We introduce the details of each metrics in the follow paragraphs.

Memory Traffic

We keep records of each data transfers, and these records include the duration and the

transferred tensor name. From these records, the memory traffic at a given range of time,

for example throughout the execution of a layer, can be tracked. Memory traffic is the
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Figure 4.3: The start_time and end_time of a layer

most direct indicator of the data reuse. The more memory traffic is, the less data reuse is

captured. Therefore, memory traffic is closely related to cache capacity. The larger cache

is, the more data reuse it can capture, thus having less memory traffic.

Execution Time

The execution time of a layer includes loading the input into the cache and computing

the output. Fig. 4.3 shows an example of estimating the execution time of a single layer.

We record the start_time and end_time of each layers, and the difference between them

is the execution time of the layer. We estimate the compute time using the computation

throughput, and estimate the data transfer time using the off­chip bandwidth.

As Fig. 4.3 shows, if there is perfect prefetching or data reuse (like layer i − 1), the

computation can directly start without stall; otherwise, the computation units must stall

until the data have been brought to cache (like layer i).

Having the execution time of each single layers, summing them up provides the total

execution time of a whole iteration, which indicates the overall performance of the given

hardware parameters. Another usage is that by grouping the layer of the same type, Fig.

5.5 indicates the execution time breakdown of layers of different types.

Average Bandwidth

As Equation 4.1 shows, the average bandwidth is derived from the execution time

(5.3.2) and memory traffic (5.3.1) introduced above. Similarly, the observed duration can
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be a single layer or a whole iteration.

Furthermore, combining the average bandwidth with the peak bandwidth, we can also

estimate the active time of the memory system with Equation 4.2. The active time rep­

resents the percentage of time that the memory system is busy transferring the data. If

the average bandwidth come out to be close to the peak bandwidth, the active time will

be high, which means that most of the time is spent transferring the data. The compute

utilization is likely to be very low due to frequent memory stalls.

bandwidth =
total bytes loaded or offloaded

execution time
(4.1)

active time =
average bandwidth
peak bandwidth

(4.2)

Average Compute Utilization

As Equation 4.3 shows, we estimate the compute utilization by number of operations

and execution time mentioned in 5.3.2. The number of operations of each layers can be

estimated from layer type and tensor size with domain knowledge.

compute utilization =
number of operations

peak FLOP/s× execution time
(4.3)

This metric represents the percentage of time that the processor is busy with computation.

To be more specific, if the I/O latency cannot be perfectly overlapped with computation,

the utilization drops because the processor needs to stall waiting for data at somemoments.

So the average utilization can provide a quick view about to what extent the computation

is affected by data transfer.

4.3 Challenges and Limitations of this Work

In this section we describe the challenges of the problem we aim to solve. And we

describe the assumption we made and the limitations of our work.
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4.3.1 Hardware Platform

As we mentioned in 4.1, we use maximum computational throughput and off­chip

bandwidth as the proxy for time estimation as [20] did. We made this assumption by two

reasons. First, our work mainly focus on the memory subsystem. In order to make the

modeling be generally applicable to as many platform as possible, we made no assumption

on any specific hardware platform, and decided to pick the throughput, the most common

parameter among all platforms, as the input to our model, instead of PE count, number

of SM, etc. Second, our goal is to explore the ultimate hardware limitation, which means

that the hardware design and software optimization have been made as good as possible

so that the performance is only bounded by the cache capacity and off­chip bandwidth. To

this end, we must assume the hardware can be almost optimal.

By the above reasons, we only take computational throughput and off­chip bandwidth

as our input to estimate time, which in essence optimistically assumes the computation

units and memory bus can always achieve full utilization as needed.

4.3.2 Complexity of Cache Management Policy

Although we would like to assume an optimal cache to explore the ultimate hardware

limitation, the search space of finding a globally optimal scheduling is exponentially large

[24]. For the sake of efficiency, we use greedy algorithm in 4.2.3 and 4.2.4 to approximate

the optimal cache management policy.

4.3.3 Scope of this Work

As we introduced in 3.3, there are several scopes of data reuse in DNN training. It is

difficult to make a model which is general enough to cover all scope of reuse but still keeps

efficiency. For example, although GPGPU­Sim [15], as a general­purposed simulator, can

almost model all scopes of reuse, it requires 50 hours to run only a forward propagation of

ResNet­50. MAESTRO [14], as an analytical model, can run much faster, but MAESTRO

is made to model intra­layer dataflow. It cannot be extended to model the inter­layer
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dataflow.

Because our goal is to explore the benefit that making a large cache could bring, we

must consider inter­layer dataflow under such situation. To this end, we consider a whole

tensor as the basic unit to ensure efficiency. Modeling the intricate intra­layer dataflow is

out of our capability. So the cache capacity we can model cannot be arbitrarily small. The

minimal caching scheme that we can model is to cache a row of feature map and a whole

weight, which ensures no re­fetching required to compute a layer [20].
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Chapter 5

Experiment Results

Our analytical model has four input parameters: cache capacity, throughput, band­

width, and DNN. We will introduce how we select the DNN in 5.1, and demonstrate their

characteristics in 5.2. Then we showed some existing hardware configurations in Table

5.2. Unless specified, all of the following experiments are done with the configuration of

RTX 2080 Ti [25].

5.1 Workloads

For image classificationDNNmodels, our framework takes networks in keras.applications

[10], along with a model transformation into the format that can be read by this pro­

gram. However, this officially support package only includes image classification DNNs.

Other applications, even written in keras, have very different data structure from those in

keras.applications, making it difficult to parse. So for GNMT [13] and Transformer [12],

we use the hand­craft code that can be directly read into this analytical model.

ResNet­50 [1], GNMT [13], Transformer [12] are all models included in MLPerf

Training [26], while MobileNet [8] is another image classification model included in

MLPerf inference [27] that use more light­weighted convolutions to replace the vanilla

convolution in ResNet. Note that the major difference between ResNet and MobileNet

is the convolution they use. The capacity of each single tensors in these networks is still

approximately the same. And the major difference between GNMT and Transformer is
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the recurrent structure. Table 5.1 lists the property of these networks and the input size we

set.

Model name Application Dominant
layer input size

ResNet­50
[1]

Image
classification
(heavy)

Convolution

N = 32
H = 224
W = 224
C = 3

MobileNet v2
[8]

Image
classification
(light)

Depthwise
Separable
Convolution

N = 32
H = 224
W = 224
C = 3

GNMT [13]
Machine
translation
(recurrent)

LSTM
N = 32
H = 1024
T = 50

Transformer
[12]

Machine
translation
(non­recurrent)

Multi­head
Attention

N = 128
H = 1024
T = 50

Table 5.1: Workload used in this work.

5.2 Characteristic of the Workloads

In this section we are going to demonstrate the properties of each workload before

including any hardware factors. To fairly compare these workloads without any hardware

effect, we use a modified roofline model as shown in Fig. 5.1 to show the properties of

four workloads in Table 5.1. The x­axis of Fig. 5.1 is the reuse frequency of each layer as

we defined in 3.4, and the y­axis is the attainable performance derived from Equation 5.1,

where rf(l) is the reuse frequency of layer l, bw is the hardware off­chip bandwidth, and

thruput is the computational throughput. Equation 5.1 is similar to the original definition

in [22] except the reuse frequency term. To have fair comparison, the bandwidth and

throughput in Fig. 5.1 are set to be the same among four workloads. In fact, the bandwidth

and throughput only affect the y coordinate of the points. The x coordinate of the points

are decided by the workload. So choosing the throughput and bandwidth do not affect the

results in Fig. 5.1.

attainable performance(l) = min{rf(l)× bw, thruput} (5.1)
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(a) ResNet­50 [1] (b) MobileNet [8]

(c) GNMT [13] (d) Transformer [12]

Figure 5.1: Our modified roofline model uses reuse frequency as the x­axis to avoid the
effect of cache capacity. To have fair comparison, the ridge point in four figures are the
same, which is the one of RTX 2080 Ti (Table 5.2).

Observation 1: Reuse frequency of tensors varies vastly among layers. As Fig. 5.1

shows, even in the sameworkload, the reuse frequency of layers can vary up to 102−104×.

Among four figures, in Fig. 5.1d, the most extreme case, these circles can even be clearly

divided into two clusters. In fact, combining with our analysis to various layer types, we

think that DNN layers can be categorized into two types according to their computation

pattern or reuse frequency. We can categorize all layers into two types according to the

definition in the next paragraph, and this taxonomy will be extensively used to explain

the other observations. To illustrate this concept, we manually added a dashed line onto

each figure in Fig. 5.1 to visually split the layers into two clusters. The coordinate of this

dashed line is also related to the workload characteristic.

The type­I layers, which are on the right of the dashed line in Fig. 5.1, are feature ex­

traction layers like convolution or fully­connected layers. In these layers, each data point

in output features is computed from multiple points in input features. Hence these layers

often have high reuse frequency. Type­I layers are in charge of the main computation of

28



doi:10.6342/NTU202101034

the DNN, so all DNNs must have type­I layers, and they can act as an indicator for the

operational intensity of a whole workload. The type­II layers, which are on the left of

the dashed line in Fig. 5.1, are point­wise layers like batch normalization, activation, add,

etc. They are in charge of light­weighted operations. Each data point in output features is

computed from single point in input features. Therefore, each data point in input features

is only accessed one or two times.

As we can observe in Fig. 5.1, all DNNs have type­II layers, whose reuse frequencies

are extremely low. If the tensors of these layers are not treated properly, the data trans­

fer time would be much longer than the computation time they actually need. As we will

show in 5.4, such cases would make them really time­consuming. In fact, type­I layers and

type­II layers in DNN are usually nearly alternately ordered. A well­known example is a

Convolution­BatchNorm­ReLU block in CNN, in which the convolution layer is followed

by a batch normalization and ReLU. If the cache can be made large enough to accommo­

date tensors of more than one layer, we can exploit adjacent­layer reuse or prefetch the

tensors of type­II layers while computing type­I layers so that the stall time while com­

puting type­II layers can be shorter, and the compute utilization can be increased.

Observation 2: ResNet and Transformer are tend to compute­bound, while MobileNet

and GNMT are tend to memory­bound. Because all DNNs must have type­I layers

which contribute to most of the computation, the reuse frequency of these type­I layers can

provide a quick view to the compute utilization. Specifically, as Fig. 5.1a and Fig. 5.1d

show, most of the type­I layers of ResNet and Transformer are compute­bound. For these

layers, as long as the dataflow is designed properly to capture sufficient intra­layer reuse,

the compute utilization while computing these layers can be quite high. As a contrast, in

Fig. 5.1b and Fig. 5.1c, a considerable portion of type­I layers of MobileNet and GNMT

is memory­bound, so the compute utilization of these workloads would be harder to get

high.

As a conclusion to this section, we define reuse frequency (Equation 3.3 and Equation

3.4) to present the properties of workloads without hardware factors in this subsection.

We use modified roofline model to preliminarily show the balance of computation and
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data transfer of workloads. These definitions correspond to the minimum caching scheme

mentioned at the end of 4.3.3 applied. With larger cache and more data reuse, the real

roofline model would be more optimistic than Fig. 5.1, and we will explore the benefit of

large cache in the following sections.

5.3 Overall Performance

As we showed the characteristic of networks and the reuse frequency of layers in 5.2,

here we further take the cache capacity into consideration to observe the effect of cache.

Table 5.2 lists the configuration of four existing hardware, where Intel i9­10980XE is a

CPU, and the others are GPUs. Because our framework aims at modeling large cache ca­

pacity, our mechanism has a lower bound for the cache capacity and cannot be arbitrarily

low. Hence, we start the cache capacity from 24 MB, which is approximately the same as

i9­10980XE last­level cache (LLC), with 2 MB per step up to 1000 MB. And the through­

put and bandwidth are mainly taken from the ones of RTX 2080 Ti [25]. By increasing the

cache capacity, we would observe how would the performance changes as cache increases

in this subsection.

The first thing that the cache capacity can affect is the amount of data reuse, and the

performance metric that the most closely related to it is the memory traffic. Therefore, we

would first show the memory traffic of these workloads with increasing cache capacity

in 5.3.1. The second thing that the cache capacity affect is the prefetching distance, the

distance that the tensor can be prefetched before it is actually used, which further affects

the execution time. We would show the execution time with increasing capacity in 5.3.2.

Last, as we introduced in 4.2.5 that we use memory traffic and execution time to estimate

the average bandwidth, thus we put the result of average bandwidth in 5.3.3.

5.3.1 Memory Traffic

Intuitively, a larger cache can provide more opportunity of data reuse, and results in

less memory traffic. Fig. 5.2 depicts the trend of memory traffic starting from 24 MB to
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Hardware
Peak
FP32
FLOPs

LLC
size
(MB)

off­chip
mem BW
(GB/s)

Memory
Type

i9­10980XE 2.765 T 24.75 94 DDR4
RTX 2080 Ti 13.45 T 5.5 616 GDDR6
Radeon 6900 XT 23.04 T 128 512 GDDR6
A100 19.45 T 40 1555 HBM2e

Table 5.2: Existing hardware configuration

1000 MB. We plot this figure to point out the effect of increased data reuse by increasing

cache capacity. The ”In” in Fig. 5.2 represents the memory traffic from off­chip memory

into the cache, and the ”Out” represents the traffic from the cache out to the off­chip

memory. If a tensor already has a copy in the off­chip memory, it can be directly removed

without offloading. Hence, the difference between in­traffic and out­traffic can imply the

number of repeated re­fetch of tensors. For example, the weights in GNMT repeatedly

loaded T times, would result in a difference of (T − 1)× cap(W ).

Observation 3: Adjacent­layer and block reuse can save around 70% of the memory

traffic in feature­dominant networks. We start this observation from Transformer, which

has the simplest network structure among the four workloads. In Fig. 5.2d, compared with

the memory traffic at 24MB, the memory traffic drops by 67%when cache capacity is 128

MB, which is the capacity of Radeon 6900 XT last­level cache (LLC) [4]. Furthermore,

With equations for estimating capacity requirementmentioned in 3.3.2 and 3.3.3, we found

that almost all the adjacent­layer reuse and block scale reuse can be captured when the

cache is up to 180 MB.

Then we move forward to the CNNs. Because image­based applications often ap­

ply down­sampling to identify features of different scales, capacity of tensors in image

classification networks varies a lot along the network, ranging from 6 MB to 98 MB in

ResNet­50, whereas feature maps in Transformer and GNMT almost keep at the same

size. Therefore, as Fig. 5.2a and Fig. 5.2b show, ResNet and MobileNet require more

capacity to capture all the adjacent­layer reuse and block scale reuse because of the larger

capacity of feature maps in early layers. But one thing in common is that as long as the

cache capacity becomes large enough (around 296 MB for ResNet, and 442 MB for Mo­
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(a) ResNet­50 [1] (b) MobileNet [8]

(c) GNMT [13] (d) Transformer [12]

Figure 5.2: Memory traffic in a training iteration with cache capacity from 24MB to 1000
MB.

bileNet), the memory traffic drops by around 70% comparing with the one at 24 MB. The

saved memory traffic can be even more for inference. Without back propagation, [21]

claims that 95% of memory traffic can be reduced in their work, which runs VGGNet

inference. However, the method [21] use to exploit adjacent­layer reuse can only work

for linear DNNs. Most DNNs proposed later than ResNet [1] include residual connection,

and cannot apply fused­layer [21].

However, the mechanism in GNMT is totally different from the others, which we will

introduce in the next observation.

Observation 4: Among all types of reuse, recurrent weight reuse is the dominant factor

to memory traffic in RNN­based models. As we further investigate into GNMT, we found

that the memory traffic at low cache capacity is mainly caused by the FC weights of RNN

cells. Recall that we showed in Fig. 3.4, the computation of RNN is step by step feeding

the feature maps of different time step to the RNN cell, and the RNN cell, which contains

several layers inside, repeatedly uses the same weight while computing different time
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steps. Because of such property, the feature maps fed into the FC layers are often much

smaller than the weight because they contain only one out of T time steps, and the number

of operations is also low. This results in the low reuse frequency of these recurrent FC

layers, which can be observed in Fig. 5.1c. To be more specific, there are two major

differences between RNNs and other type of networks. First, RNNs are weight­dominant

in terms of memory traffic because the capacity of weight is larger than that of the feature

maps of a time step.1 Second, weight will be used multiple times in an inter­layer manner

because of its recurrent structure.

Conclusively, whether weight can be kept in cache to be reused remains a key factor

to the performance of RNN­based model. If the cache is not large enough, the weights

have to be repeatedly re­fetched, incurring huge inbound traffic. As Fig. 5.2c shows, the

memory traffic decreases by 96.6% as cache capacity increased from 24 MB to 500 MB,

which demonstrates the influence of the recurrent weight reuse in RNN.

5.3.2 Execution Time

In Fig. 5.3, we tested two different setting of throughput, and the speedup is also

plotted. The two lines share exactly the same hardware parameters except the throughput.

By comparing the execution time with two different computational throughput, we can

observe the extent that the networks are tend to be compute­bound or memory­bound.

Memory­bound networks would have limited improvement with merely increasing the

computation throughput. On the other hand, compute­bound networks would have their

speedup closer to the theoretical bound.

Observation 5: Even the computation­intensive networks cannot fully utilize the in­

creased computation throughput at existing cache capacity. As Fig. 5.3 shows, with

73% more throughput, there is only 20% speedup on ResNet­50 and 40% speedup on

Transformer with 24 MB cache. If we look back to Fig. 5.1, all workloads contain some

layers whose reuse frequencies are far less than the ridge point, e.g., BatchNorm and Ac­

tivation. These layers require unattainably high bandwidth (up to 105 GB/s) to balance
1In terms of memory footprint, the total capacity of feature maps is still larger than the weights
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(a) ResNet­50 [1] (b) MobileNet [8]

(c) GNMT [13] (d) Transformer [12]

Figure 5.3: Execution time (left axis) of a training iteration with cache capacity from 24
MB to 1000 MB. The throughput of 2080 Ti is 13.45 TFLOPs, and 6900 XT is 23.04
TFLOPs. The speedup (right axis) is the execution time of 2080 Ti divided by the one of
6900 XT. The dashed line at the top is the theoretical upper bound of the speedup, which
is

23.04

13.45
= 1.71.

computation and data transfer time, and there is no way to hide the data transfer latency

of these layers if the cache is too small to cache a whole layer to exploit adjacent­layer

reuse.

Observation 6: Forward­backward reuse helps little for most DNNs. As Fig. 5.3

shows, the lines of all networks except MobileNet almost keep flat after around 400 MB,

and the speedup is close to the upper bound at high capacity. When we use the formulas

in 3.3 to estimate the capacity at each level of reuse, 400 MB is at the level of block

scale reuse, and forward­backward reuse requires GBs of cache to fully capture. This

implies that the compute utilization has become almost full without totally having forward­

backward reuse.

To explain this phenomenon, as we mentioned in 3.4, data reuse and prefetching are

two of the methods that can improve the utilization at low reuse frequency layers. If
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the type­I layers have sufficient computation time to overlap the prefetching of tensors of

type­II layers, then the increased forward­backward reusewill not save any execution time.

For example, as Fig. 5.1a and Fig. 5.1d show, ResNet and Transformer have many layers

whose reuse frequency is much larger than the ridge point. So the increased forward­

backward reuse at high capacity barely decrease the execution time. Although in Fig.

5.1c it seems that GNMT does not have as many compute­bound layers as ResNet and

Transformer, the figure cannot present the effect of recurrent weight reuse. With recurrent

weight reuse, in fact most of the feature maps of GNMT are compute­bound. However,

for light­weighted workload like MobileNet, this observation does not work well. We will

introduce more details in the next observation.

Observation 7: Forward­backward reuse still helps the light­weighted DNNs. In Fig.

5.3, a major difference between MobileNet and the other networks is that the execution

time is still decreasing in visible pace at high capacity. As we showed in Fig. 5.1b, most of

the Conv2D and DepthwiseConv2D layers in MobileNet have their reuse frequency lower

than the ridge point, so the idea that overlapping prefetching with computation­intensive

layers mentioned in Observation 6 does not work for MobileNet. In such cases of light­

weighted networks, any scopes of reuse mentioned in 3.3 contributes to the execution time

because the data transfer time cannot be hidden with the computation.

Observation 8: Memory­boundDNNs are more sensitive to increased capacity. From

the characterization shown in Fig. 5.1, we can roughly categorize ResNet and Transformer

as compute­bound, and GNMT and MobileNet as memory­bound. Comparing with the

24MB cache, as the capacity being increased to 500MB, the execution time of ResNet­50

decreases by 48.1%, and Transformer 26.5%. On the other hand, the time of MobileNet

decreases by 69.6%, and GNMT 81.1%. This points out that the benefit that increasing

capacity can bring is still closely related to the workload property.

Observation 9: Cache must be large enough to be effective for RNN­based networks.

As Fig. 5.3c shows, when the cache is only 24 MB, the speedup of GNMT is just as low

as MobileNet, less than 10% out of 71% more computational throughput. Moreover, [19]

even reported that the impact of on­chip cache for RNNs is negligible. However, as we
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can observe in Fig. 5.1c, the weights of FC in RNN cell without recurrent weight reuse

are memory­bound. So the main reason that RNN cannot perform well on state­of­the­art

cache is the poor reuse of weights in RNN cells. If we have a large cache, or having a

dedicated weight cache to make an attempt to reuse the weights, the performance of RNN

can probably be improved.

5.3.3 Average Bandwidth

(a) ResNet­50 [1] (b) MobileNet [8]

(c) GNMT [13] (d) Transformer [12]

Figure 5.4: Average bandwidth of a training iteration with cache capacity from 24 MB to
1000 MB. The throughput of both lines are set to be 13.45 TFLOPs, which is the same as
RTX 2080 Ti. The maximum bandwidth of GDDR6 is 616 GB/s, and that of HBM2e is
1555 GB/s

As Equation 4.1 shows, the average bandwidth is related to total bytes of data transfer

and execution time. That is, the results in this part are basically derived from 5.3.1 and

5.3.2. Fig. 5.4 shows the average bandwidth throughout an iteration with different cache

capacity. The two lines represents different off­chip bandwidth settings. One is set to be

the same as GDDR6 in RTX 2080 Ti, 616 GB/s, and the other is as HBM2e in A100, 1536
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GB/s. Because the memory traffic is not affected by off­chip bandwidth, and the average

bandwidth is derived from memory traffic and execution time, the distance between the

two lines can also reflect the improvement of execution time that high­bandwidth memory

can bring.

Observation 10: For DNNs having enough compute­bound layers, a large cache can

diminish the bandwidth requirement. Fig. 5.4 shows that except for MobileNet, the two

lines are getting close as capacity increases, which means that the help of HBM becomes

smaller. In fact, this observation can be seen as an extension from Observation 6. As

long as the prefetching can be overlapped with computation, the bandwidth requirement

is effectively reduced.

In conclusion, for these workloads, if the cache is made larger, the off­chip band­

width does not necessarily have to be high. Bandwidth and capacity are often tradeoff in

memory system design. Without the requirement of high off­chip bandwidth, using a low

bandwidth but high capacity off­chip memory can become an alternative. The increased

off­chip memory capacity can allow deeper DNNs to be trained.

Observation 11: Increasing capacity helps little to alleviate the bandwidth eagerness

of light­weighted DNNs. MobileNet is the only one in Fig. 5.4 whose two lines are

always far apart even with large cache. Despite the fact that the memory traffic decreases

by around 70% with adjacent­layer reuse and block scale reuse in all workloads as we

mentioned in Observation 3; however, the execution time of MobileNet also decreases by

around 70%, so the average bandwidth of the memory is almost equally high.

To explain this phenomenon, as Fig. 5.1b shows, there are only a few layers whose

reuse frequencies are larger than the ridge point. Therefore, in such light­weighted net­

works, the data transfer time is longer than the computation time in most layers. Even

though the cache capacity is increased, possibly allowing longer prefetching distance,

there is still no enough computation time to overlap with the prefetching time. These

evidences are all telling that this setting of computational throughput is just too high for

MobileNet. This workload prefers low computational throughput while high bandwidth

configurations.
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As a conclusion to this section, one of our goals is to explore whether a large on­chip

cache can compensate the low off­chip bandwidth, so that the off­chip memory can be

easily made larger or cheaper. The answer would be a ”yes” to the computation­intensive

DNNs like ResNet and Transformer, and a ”no” to the light­weighted DNNs like Mo­

bileNet. And for RNN­based network, the cache must be large enough to be effective.

5.4 Layer Execution Time Breakdown

To further analyze the influence of each type of layers, in Fig. 5.5 we extend the results

from Fig. 5.3, and breakdown the execution time by the layer type. According to the Table

5.2, we select 24 MB and 128 MB to observe the existing small cache and large cache.

And from Fig. 5.3, the lines of most networks are getting flat after 300­400 MB, so we set

another point to observe at 400 MB. The other points in between are inserted to observe

the trend.

Observation 12: The point­wise layers still take non­negligible part of time in existing

cache capacity. When cache capacity is 24MB, type II layers in ResNet­50 (BatchNorm,

ReLU, Add) takes 46.15% of execution time, and those in Transformer (BatchNorm, Ac­

tivation, Dropout, Add) takes 26.69%. Besides our experiments, [16] also reports that

batchnorm and activation takes 26.05% of total execution time when training ResNet­50

on NVIDIA Quadro P4000 GPU with MXNet. As we introduced in 4.2.5, execution time

is related to both computation and data transfer. Although point­wise layers are having

very low computation time, the data transfer time can also make them time­wasting. As

the cache capacity increases, the execution time taken by these point­wise layers can be

effectively reduced by reuse and prefetching.

Observation 13: The data transfer time of type­II layers can be almost perfectly hidden

when the cache capacity is at the level of caching a block of layers. As Fig. 5.5a

and Fig. 5.5d show, as the capacity increases, the reduced execution time in ResNet and

Transformer mainly results from the type­II layers. Type­I layers have longer computation

time than data transfer time, so they are barely affected by the increased capacity. The
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(a) ResNet­50 (b) MobileNet

(c) GNMT (d) Transformer

Figure 5.5: Execution time breakdown with different cache capacity

execution time is dominated by type­I layers in both networks when the capacity is 400

MB, which also provides an evidence to Observation 6 that increasing data reuse at this

level would not improve the execution time of compute­bound layers.

5.5 Effect of Batch Size

Batch training is a widely used skill in DNN training. Let alone the accuracy, batch

training is in fact a double­edged sword. With larger batch size, the reuse frequency of

weight can be increased, but the capacity of feature map also increases, enlarging the

capacity requirement of the same reuse distance. Fig. 5.6 shows the effect of batch size

under low and high cache capacity. The metric to compare performance among different

batch size, throughput (sample/s), is calculated by Equation 5.2, which means the the
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number of samples that can be trained by the network per second.

Throughput =
batch size

execution time of an iteration
(5.2)

(a) ResNet­50 (b) MobileNet

(c) GNMT (d) Transformer

Figure 5.6: Throughput at different batch size. The blue bars (left axis) represent the
throughput when cache is 24MB, and the orange bars (right axis) represent the throughput
when cache is 400 MB.

Observation 14: Increasing batch size does not always increases the throughput. As

Fig. 5.6 shows, for ResNet, MobileNet, and Transformer, the increased reuse frequency

brought by increasing batch size is negligible. The limiting factor for these networks are

the data reuse that can be captured. As we introduced in Observation 6, whether ResNet

and Transformer can have high utilization depends on whether adjacent­layer reuse and

block scale reuse can be captured. If the capacity of feature maps is too large for these

reuse, the latency at point­wise layers cannot be hidden. On the other hand, forMobileNet,

as we mentioned in Observation 7, the capacity of feature map affects the proportion of

forward­backward reuse that can be captured. So MobileNet prefers the batch size to be
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as small as possible.

However, the mechanism in GNMT is totally different from the other networks. As

we mentioned in Observation 9, unlike the other networks, the weights of FC in RNN

cells do not have enough reuse frequency without recurrent weight reuse, and the weight

is the major limiting factor. Therefore, when the cache is small, increasing batch size can

increase the reuse frequency of these weights thus improves the throughput. With 400MB

cache, if the batch size is too large so that some of the recurrent weight reuse is missed,

the throughput will be lower than with small batch size.

41



doi:10.6342/NTU202101034

Chapter 6

Conclusion

We introduce all scale of data reuse throughout a DNN training iteration, and we pre­

sented an analytical performance modeling tool for DNN training. We use this tool to

explore the data reuse can be captured at a given cache capacity, and the maximum over­

lapping of computation and data transfer given computational throughput and off­chip

bandwidth. With the help of this tool, we can explore the benefit of a large cache can

bring, or discuss what may happen with a different setting of off­chip bandwidth or com­

putational throughput, which can allow us to discuss a suitable logic/memory balance, or

even use it for design space exploration (DSE).

From our experiment results, we found that cache indeed plays an important role in

DNN training, though the benefit it brings is closely related to the workload characteris­

tics. For computation­intensive workloads, the bottleneck is whether the latencies of the

point­wise layers can be hidden through adjacent­layer reuse or prefetching. For light­

weighted workloads, the key problem is to select an appropriate combination of compu­

tational throughput and bandwidth that fits the reuse frequency of computation layers.

For RNN­based models, the cache must be large enough to cache recurrent weight to be

helpful. And when it comes to batch size, one must consider both the increased reuse of

weights and increased capacity of feature maps.

From the view of progress of IC process, having a large cache should be definitely

possible, and more and more design options are appearing with emerging memories. For

example, a large cache can decrease data transfer requirements, and allow off­chip mem­
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ory to be made with denser but lower bandwidth memories, which can allow deeper DNN

or larger batch size to be trained. Thus we explore the performance with a larger cache

with representative workloads to find out the effect of cache capacity to data reuse and

I/O latency hiding. Moreover, this tool allows accelerator hardware designers to evaluate

tradeoffs between logic and memory. It also provides network researchers to quickly get

some feedback on the efficiency of new models on accelerators.
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